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PAPER
Secret Sharing Schemes Based on Linear Codes Can Be Precisely
Characterized by the Relative Generalized Hamming Weight

Jun KURIHARA†,††a), Member, Tomohiko UYEMATSU†b), Senior Member,
and Ryutaroh MATSUMOTO†,†††c), Member

SUMMARY This paper precisely characterizes secret sharing schemes
based on arbitrary linear codes by using the relative dimension/length pro-
file (RDLP) and the relative generalized Hamming weight (RGHW). We
first describe the equivocation Δm of the secret vector�s = [s1, . . . ,sl ] given
m shares in terms of the RDLP of linear codes. We also characterize two
thresholds t1 and t2 in the secret sharing schemes by the RGHW of linear
codes. One shows that any set of at most t1 shares leaks no information
about �s, and the other shows that any set of at least t2 shares uniquely de-
termines �s. It is clarified that both characterizations for t1 and t2 are better
than Chen et al.’s ones derived by the regular minimum Hamming weight.
Moreover, this paper characterizes the strong security in secret sharing
schemes based on linear codes, by generalizing the definition of strongly-
secure threshold ramp schemes. We define a secret sharing scheme achiev-
ing the α-strong security as the one such that the mutual information be-
tween any r elements of (s1, . . . ,sl) and any α−r+1 shares is always zero.
Then, it is clarified that secret sharing schemes based on linear codes can
always achieve the α-strong security where the value α is precisely char-
acterized by the RGHW.
key words: secret sharing scheme, linear code, relative generalized Ham-
ming weight, relative dimension/length profile

1. Introduction

Secret sharing scheme [2], [15] is a process of encoding
a secret s into a set of n pieces of information segments
(called shares) in such a way that only certain subsets
of them can determine s. The collection of subsets that
can determine s is called the access structure of the se-
cret sharing scheme. An element in the access structure
is called qualified set, otherwise, nonqualified set. Secret
sharing schemes typically have the following complemen-
tary thresholds t1, t2(≤ n): (1) any set of at most t1 shares
leaks no information of the secret, and (2) any set of at least
t2 shares is qualified set. When the secret sharing scheme
satisfies t1 + 1 = t2, the scheme is called a secret sharing
scheme with the (t2,n)-threshold access structure or (t2,n)-
threshold scheme. Shamir’s scheme [15] is based on inter-
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polation of a (t2 −1)-degree polynomial, and it is known as
a typical (t2,n)-threshold scheme.

McEliece et al. [12] first investigated the relation be-
tween linear codes and secret sharing schemes. They
pointed out that shares in Shamir’s threshold scheme [15]
can be viewed as symbols of a codeword in Reed-Solomon
code [10]. Piepryzk et al. [14] clarified that threshold
schemes can be constructed from maximum distance sepa-
rable (MDS) codes [10]. Massey [11] extended McEliece et
al.’s construction to those based on general linear codes C ,
and demonstrated that there exists a relationship between a
qualified set and a codeword in the dual code C⊥ of C . Du-
ursma et al. [6] gave another construction of secret sharing
schemes which use a linear code C and its subcode C ′ ⊂ C
with dim (C /C ′) = 1 to encode s into shares. Moreover,
they characterized the thresholds t1, t2 in their scheme by the
minimum distance of the collection of cosets C /C ′, called
coset distance.

On the other hand, since regular (t2,n)-threshold
schemes generate shares from a secret scalar s, i.e., an el-
ement of a field F, Blakley [1] and Yamamoto [18] gener-
alized (t2,n)-threshold schemes for an l-dimensional vec-
tor �s = [s1, . . . ,sl ] ∈ Fl (1 ≤ l ≤ t2 − 1). Their schemes
are called (t2, l,n)-threshold ramp schemes, and realize l
times smaller bit-size of each share than regular (t2,n)-
threshold schemes. In (t2, l,n)-threshold schemes, there
exists a trade-off between the size of each share and the
amount of information leaked from nonqualified sets ac-
cording to l. Namely, the thresholds t1, t2 satisfy t1 + l = t2,
and i/l (i = 1, . . . , l − 1) of Shannon entropy about �s leaks
from any set of t1 + i shares. Yamamoto [18] classified
threshold ramp schemes into two classes. One is weakly-
secure schemes, and the other is strongly-secure schemes.
In the case of weakly-secure schemes, some elements of �s
might leak out deterministically from a set whose cardinal-
ity is smaller than t2. In contrast, strongly-secure schemes
guarantee that no information about a tuple (si : i ∈ I )
for any I ⊆ {1, . . . , l} can be obtained from any t2 − |I |
shares. Hence, strongly-secure schemes are more secure
than weakly-secure schemes. Threshold ramp schemes can
be constructed by using MDS codes as well as regular
threshold schemes. Nishiara et al. [13] proposed a strongly-
secure threshold ramp schemes based on a polynomial in-
terpolation. Their scheme employs a systematic MDS code
transformed from a Reed-Solomon code.

Chen et al. [4] extended threshold ramp schemes, and
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Table 1 Comparison of characterizations for thresholds t1, t2.

Characterization method Tightness of the characterization
[4, Sect. 4.1] by minimum Hamming weight not tight (Proposition 15, Example 16)
[4, Sect. 4.2] by minimum Hamming weight not tight (Proposition 12, Example 14)

[6] by coset distance tight (only for a scalar secret)
Theorem 9 by RGHW always tight

Table 2 Comparison of characterizations for the α-strong security.

Characterization method Tightness of the characterization
[8] by minimum Hamming weight not tight (Proposition 20, Example 16)

Theorem 19 by RGHW always tight

proposed two secret sharing schemes based on arbitrary lin-
ear codes. Namely, one given in [4, Sect. 4.1] is a simple
extension of Massey’s construction for an l-dimensional se-
cret vector�s. The other called more fruitful approach in [4,
Sect. 4.2] can be also viewed as a generalization of Duursma
et al.’s construction [6] for�s. Later, Subramanian et al. [16]
proposed a nested coding scheme over the erasure-erasure
wiretap channel, which can be viewed as the same secret
sharing scheme as Chen et al.’s more fruitful approach. By
the minimum Hamming weight of linear codes, Chen et al.
characterized thresholds t1 and t2 in each of their two con-
structions, respectively. However, these characterizations
are loose, i.e., they do not always describe the maximum
possible value of t1 and the minimum possible value of t2
in their schemes. Also, the information leaked from more
than t1 shares was not precisely analyzed. That is, no pre-
cise characterization of secret sharing schemes based on ar-
bitrary linear codes has been presented yet.

The first aim of this paper is to characterize secret shar-
ing schemes based on general linear codes precisely. We
give a formal definition of secret sharing schemes based
on linear codes by a linear code D1, its subcode D2, and
their punctured codes C1 and C2. Our definition includes
Massey’s construction [11], Duursma et al.’s one [6] and
both of Chen et al.’s two constructions [4]. We precisely
characterize the minimum uncertainty (called equivocation
[17]) of the secret vector given m(≤ n) shares by the relative
dimension/length profile (RDLP) [9] of C1,C2 or D1,D2.
We also derive a new characterization of thresholds t1 and t2
by the relative generalized Hamming weight (RGHW) [9].
Table 1 summarizes the comparison of our characterization
by the RGHW and existing ones by different methods for
thresholds t1, t2. Duursma et al.’s characterization by the
coset distance can be viewed as a special case of ours where
the secret is restricted to be an elements of F. Moreover, it is
clarified that our characterization by the RGHW always de-
scribe the maximum possible t1 and the minimum possible
t2, unlike Chen et al.’s ones.

The second aim of this paper is to characterize the
strong security in secret sharing schemes based on gen-
eral linear codes, by generalizing the definition of strongly-
secure threshold ramp schemes. We first define an anti-
access set J as a special set of shares, which is a general-
ized definition of nonqualified sets in strongly-secure ramp

threshold schemes [18]. An anti-access set J guarantees
that for any I ⊆ {1, . . . , l}, no information about a tuple
(si : i ∈ I ) can be obtained from |J |+ 1−|I | shares of
J . We also define a secret sharing scheme achieving the
α-strong security as the one such that all subsets of shares
with cardinality at most α are anti-access sets. We then
clarify that the schemes of Massey [11] and Chen et al. [4,
Sect. 4.1] can always achieve the α-strong security where
the value α is precisely characterized by the RGHW. Ta-
ble 2 presents the comparison of our characterization by the
RGHW and existing one for the α-strong security. Similar
to the thresholds t1, t2 we stated above, it is proved that the
characterization of α by the RGHW is better than the exist-
ing characterization by the minimum Hamming weight [8].

One merit of secret sharing schemes based on arbitrary
linear code is the efficiency in terms of the size of a field F,
since there is a rich variety of long linear codes over F rather
than MDS codes over F. This is because the MDS nature of
the code restricts the maximum possible number of shares
in threshold schemes. In fact, the so-called Main Conjecture
on MDS codes [10, p.327] implies that the length of an MDS
code over F is at most |F| plus a constant (1 or 2). Especially,
the possible length of Reed-Solomon code over F is at most
|F| − 1. Hence, in order to generate more than |F| shares
from a secret element s ∈ F by an MDS code, the MDS code
must be constructed over a field whose size is larger than |F|.
It is quite inefficient, especially in the case where a secret
sharing scheme is used in cryptographic secure computation
[4]. In contrast, secret sharing schemes based on long linear
codes can construct such applications efficiently. Then, our
characterization precisely determines the property of secret
sharing schemes from the parameter of the linear code.

The remainder of this paper is organized as follows.
Sect. 2 introduces basic notations and gives a formal defini-
tion of secret sharing schemes based on linear codes. Sect. 3
precisely characterizes the amount of the secret information
leaked from m(≤ n) pieces of shares, and clarifies that our
characterization is better than existing researches. Sect. 4
gives the definition of the strong security in secret sharing
schemes. Further, this section reveals the region of the num-
ber of shares, in which the strong security can be achieved.
Finally, Sect. 5 concludes this paper.
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2. Preliminary

2.1 Basic Notations

Let H(X) be Shannon’s entropy of a random variable X ,
H(X |Y ) be the conditional entropy of X given Y , and I(X ;Y )
be the mutual information between X and Y [5]. Let F stand
for a finite field. Let |X | denote the cardinality of a set X .
For sets X and Y , we denote by X \Y = {x ∈X : x �Y }
the difference of sets X and Y . The Hamming weight of a
vector�x = [x1, . . . ,xn] ∈ Fn is defined by

wt(�x) = |{i : xi � 0}|.
The Hamming distance between two vectors�x = [x1, . . . ,xn]
∈ Fn,�y = [y1, . . . ,yn] ∈ Fn is defined by

d(�x,�y) = |{i : xi � yi}|.
For a linear subspace C ⊆ Fn, the minimum Hamming dis-
tance or minimum Hamming weight of C is given by

d(C ) = min{d(�x,�y) :�x,�y ∈ C ,�x ��y}
= min

{
wt(�x) :�x ∈ C \{�0}

}
.

An [n,k,d] linear code C over F is a k-dimensional sub-
space of Fn, where d = d(C ). A subspace of a code is called
a subcode. For any linear code C , we define its dual code
by

C⊥ = {�x ∈ Fn : �x ·�y = 0,∀�y ∈ C },
where�x ·�y represents the standard inner product of vectors�x
and�y.

2.2 Secret Sharing Scheme Based on Linear Codes

In this subsection, we formally define a secret sharing
scheme based on linear codes.

Let A = {1, . . . ,N} be a set of indices. For a subset
J ⊆ A and a vector �c = [c1, . . . ,cN ] ∈ FN , let PJ (�c) be a
vector of length N, and the t-th component of PJ (�c) is ct

if t ∈ J and given by 0 if t �J . For example for J =
{1,3,5} and �c = [1,1,0,1,1] (N = 5), we have PJ (�c) =
[1,0,0,0,1]. The projection or punctured code PJ (C ) of a
code C ∈ FN is the map given by

PJ (C ) =
{

PJ (�c) :�c ∈ C
}

.

Now we define the following secret sharing scheme
that generates n shares.

Definition 1 (Secret sharing schemes). Let D1 ⊆ FN be
a linear code over F, and D2 ⊂ D1 be a subcode of D1.
For an index set X ⊆ A = {1, . . . ,N} with |X | = n el-
ements, we define the punctured codes C1 = PX (D1) and
C2 = PX (D2). Assume that |X | is chosen in such a way
that C1 � C2. Choose an arbitrary linear code S satisfying

C1 = S +C2 and S ∩C2 = {�0},
i.e., direct sum. We then write the dimension of the coset
C1/C2 by

l = dim (C1/C2) = dim S .

Let �s ∈ Fl be the secret which is assumed to be uniformly
distributed over Fl . To generate n shares, we first choose a
codeword �c2 ∈ C2 uniformly at random and independently
from �s. Fix an arbitrary isomorphism ψ : Fl → S . Then,
generate a share vector �c1 = [c1, . . . ,cN ] = ψ(�s)+�c2 ∈ C1,
and send or store each element ci for i ∈ X as a share.

Here we note that C2 ⊂ C1 always holds in this defini-
tion. Also note that S can be always chosen, for instance
by completing a basis of C2 to one of C1.

Let us consider the following case. Assume that N −
n < d(D1) and N−n = dim D1−dim D2. We then write l =
dim D1 − dim D2 = N − n, and let X = {l + 1, . . . , l + n}.
Choose ψ in such a way that ([�s,�0] +ψ(�s)+�c2) ∈ FN is a
codeword of D1. Then, our definition is equivalent to the
one proposed by Massey [11] and Chen et al. [4, Sect. 4.1].

Moreover, the scheme given by Duursma et al. [6] and
the scheme referred to as a more fruitful approach in [4,
Sect. 4.2] by Chen et al. are also included in our definition
as the case for X = A , i.e., C1 = D1 and C2 = D2.

3. Characterization of Secret Sharing Schemes

This section precisely characterizes the amount of the se-
cret information leaked from m(≤ n) pieces of shares in the
secret sharing scheme given by Definition 1.

3.1 Equivocation of the Secret

Let S be a random variable whose realization is a secret vec-
tor�s. Let CI = (Ci : i ∈ I ) be a tuple of random variables
for an index set I ⊆ X , where the realization of Ci is a
share ci. Then, the minimum uncertainty of S given m shares
is defined by

Δm = min
I⊆X ,|I |=m

H(S|CI ), (1)

which is called equivocation [17]. We will clarify that, in the
secret sharing scheme defined by Definition 1, the equivo-
cation of S is precisely characterized by the relative dimen-
sion/length profile (RDLP) [9].

For a subset I of A = {1, . . . ,N}, the shortened code
CI of a code C ⊆ FN is defined as the set of all codewords
whose components are all zero outside of I , that is,

CI = {�c = [c1, . . . ,cN ] ∈ C : ci = 0 for i �I } .

For example, for J = {2,3} (N = 3) and

C = {[0,0,0], [1,1,0], [1,0,1], [0,1,1]},
we have CJ = {[0,0,0], [0,1,1]}.
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The RDLP of C1 and C2 is defined by the maximum
difference of dimension between shortened codes (C1)I

and (C2)I as follows.

Definition 2 (Relative dimension/length profile [9]). Let
C1 ∈ FN be a linear code and C2 be a subcode of C1. The
i-th relative dimension/length profile (RDLP) of C1 and C2
is defined by

Ki(C1,C2) = max
I⊆A ,|I |=i

{dim (C1)I −dim (C2)I } ,

for 0 ≤ i ≤ N.

Remark 3. When C2 = {�0} in this definition, the i-th RDLP
Ki(C1,C2) = Ki(C1,{�0}) is equivalent to the i-th regular di-
mension/length profile [7] of C1.

Note that, for a code C ⊆ FN and an index set J ⊆A ,
dual codes of a punctured code PJ (C ) and a shortened code
CJ are defined as

(PJ (C ))⊥ = {�x ∈ PJ (FN) :�x ·�y = 0,∀�y ∈ PJ (C )},
(CJ )⊥ = {�x ∈ PJ (FN) :�x ·�y = 0,∀�y ∈ CJ },

respectively, i.e., dual codes over PJ (FN).
Theorem 4 determines the equivocation Δm defined in

Eq.(1) by the RDLP of C⊥
2 and C⊥

1 , and also (D⊥
2 )X and

(D⊥
1 )X .

Thereom 4. In the secret sharing scheme defined by Defini-
tion 1, the equivocation given m(≤ n) shares is characterized
by the RDLP as follows.

Δm = l −Km

(
C⊥

2 ,C⊥
1

)

= l −Km

(
(D⊥

2 )X ,(D⊥
1 )X

)
.

Proof. Let I ⊆X be an arbitrary index set with cardinality
|I | = m. It is shown by [4, Theorem 10] that we have the
conditional entropy of S given CI as follows.

H(S|CI ) = l−dim PI (C1)+dim PI (C2). (2)

For a code C ⊆ FN and an index set J ⊆ A , we have
PJ (C⊥) = (CJ )⊥ and hence PJ (C ) = PJ ((C⊥)⊥) =
((C⊥)J )⊥ from Forney’s second duality lemma [7, Lemma
2]. Thus, Eq.(2) can be rewritten as

H(S|CI ) = l−dim ((C⊥
1 )I )⊥ +dim ((C⊥

2 )I )⊥

= l−m+dim (C⊥
1 )I +m−dim (C⊥

2 )I

= l−dim (C⊥
2 )I +dim (C⊥

1 )I .

Recall C⊥
1 and C⊥

2 are defined as subspaces of PX (FN) for
an index set X ⊆ A . Hence the equivocation Δm is given
by

Δm = l − max
I⊆X ,|I |=m

{dim (C⊥
2 )I −dim (C⊥

1 )I }

= l −Km(C⊥
2 ,C⊥

1 ),

from Definition 2.
Lastly, we will prove the second equality. Forney’s sec-

ond duality lemma [7, Lemma 2] yields Ci = PX (Di) =
PX ((D⊥

i )⊥) = ((D⊥
i )X )⊥, and hence C⊥

i = (D⊥
i )X for

i = 1,2. We thus have

Δm = l −Km((D⊥
2 )X ,(D⊥

1 )X ).

�

3.2 Bounds of Thresholds

Secret sharing schemes typically have the following com-
plementary thresholds t1, t2: (1) any set I ⊆ X of at most
t1 shares offers the mutual information I(S;CI ) = 0, and
(2) any set J ⊆ X of at least t2 shares offers the mu-
tual information I(S;CJ ) = H(S). This section clarifies the
maximum value of t1 and minimum value of t2 in the secret
sharing scheme of Definition 1 by the relative generalized
Hamming weight (RGHW) defined by Luo et al. [9].

Definition 5 (Relative generalized Hamming weight [9]).
Let A = {1, . . . ,N}. Let C1 ∈ FN be a linear code and C2
be a subcode of C1. The i-th relative generalized Hamming
weight (RGHW) of C1 and C2 is defined by

Mi(C1,C2) = min
I⊆A

{|I | : dim (C1)I −dim (C2)I ≥ i} ,

for 0 ≤ i ≤ dim (C1/C2).

The following proposition given by Luo et al. [9] clari-
fies the relationship between the RGHW and the RDLP.

Proposition 6 ([9, Proposition 2]). Let A = {1, . . . ,N}. For
a linear code C1 ∈ FN and its subcode C2 ⊂ C1, the i-th
RGHW Mi(C1,C2) is strictly increasing with i. Moreover,
M0(C1,C2) = 0 and

Mi(C1,C2) = min
I⊆A

{|I | : dim (C1)I −dim (C2)I = i} ,

= min{m : Km(C1,C2) = i} ,

for 0≤ i≤ dim (C1/C2), where Km(·, ·) is the RDLP defined
by Definition 2.

Remark 7. When C2 = {�0}, the i-th RGHW Mi(C1,C2) =
Mi(C1,{�0}) is equivalent to the i-th regular generalized
Hamming weight [17] of C1.

Remark 8. The first RGHW M1(C1,C2) of C1 and C2 is
equivalent to the coset distance of C1/C2, given by Duursma
et al. [6].

We then give the following theorem.

Thereom 9. Consider the secret sharing scheme defined by
Definition 1. Then, for a set I ⊆ X , the mutual informa-
tion between S and CI satisfies I(S;CI ) = 0 if

|I | ≤ M1(C⊥
2 ,C⊥

1 )−1, (3)
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and I(S;CI ) = H(S) if

|I | ≥ n−M1(C1,C2)+1. (4)

Proof. For an arbitrary index set I ⊆ X with cardinality
|I | = m, the maximum mutual information between S and
CI is expressed by the equivocation from Theorem 4 as fol-
lows.

max
I⊆X ,|I |=m

I(S;CI ) = H(S)− min
I⊆X ,|I |=m

H(S|CI )

= Km(C⊥
2 ,C⊥

1 ).

Hence, from Proposition 6, the smallest index set satisfying
I(S;CI ) = 1 is of size

min{m : Km(C⊥
2 ,C⊥

1 ) = 1} = M1(C⊥
2 ,C⊥

1 ).

This implies that I(S;CI ) = 0 whenever Eq.(3) holds.
Next consider the minimum mutual information be-

tween S and CI for |I | = m. The relation between the
shortened code and punctured code of a code C ⊆ FN for
an index set J ⊆ A is given by dim C = dim CJ +
dim PJ̄ (C ) from Forney’s first duality lemma [7, Lemma

1], where J̄ = A \J . Hence, Eq.(2) can be rewritten as

H(S|CI ) = dim (C1)Ī −dim (C2)Ī , (5)

where Ī = X \I . Thus, the minimum mutual information
is given by

min
I⊆X ,|I |=m

I(S;CI )

= H(S)− max
I⊆X ,|I |=m

H(S|CI )

= l− max
I⊆X ,|I |=m

{dim (C1)Ī −dim (C2)Ī }

= l− max
Ī⊆X ,|Ī |=n−m

{dim (C1)Ī −dim (C2)Ī }

= l−Kn−m(C1,C2).

From Proposition 6, we thus have the largest index set I
satisfying I(S;CI ) = l −1 is of size

max{m : Kn−m(C1,C2) = 1}
= max{n−m : Km(C1,C2) = 1}
= n−min{m : Km(C1,C2) = 1}
= n−M1(C1,C2).

This implies that I(S;CI ) = 0 whenever Eq.(4) holds. �

Remark 10. Eq.(5) is the same equation as [16, Eq. (4)]
derived by Subramanian et al.

The thresholds given by the right-hand side of Eq.(3)
and Eq.(4) in Theorem 9 are always tight. This is be-
cause the proof of Theorem 9 also reveals that there ex-
ist index sets I ⊆ X with |I | = M1(C⊥

2 ,C⊥
1 ) satisfying

I(S;CI ) = 1 and J ⊆ X with |J | = n−M1(C1,C2) sat-
isfying I(S;CJ ) = l −1.

Although we have assumed, in Definition 1, that �s is
uniformly distributed over Fl , the following corollary im-
mediately follows from [3, Lemma 2, Theorem 3].

Corollary 11. In Definition 1, assume that�s ∈ Fl is chosen
according to an arbitrary distribution over Fl and indepen-
dently from�c2. Even in this case, Theorem 9 still holds.

Note that the size of smallest index set I sat-
isfying I(S;CI ) = l is Ml(C⊥

2 ,C⊥
1 ), since dim C⊥

2 −
dim C⊥

1 = dim C1 − dim C2 = l from Definition 1. Then,
Ml(C⊥

2 ,C⊥
1 ) ≤ n always holds from Definition 5. Thus the

secret vector�s can always be reconstructed from some sub-
sets of shares in the secret sharing scheme.

3.2.1 Comparison with Existing Results

Here we clarify that our bounds given in Theorem 9 are
tighter than the ones of existing results.

First, consider the case of X = A , i.e., D1 = C1 and
D2 = C2, in the secret sharing scheme defined in Defini-
tion 1. Then, the scheme is equivalent to that of Duursma et
al. [6] and the one referred to as a more fruitful approach in
[4, Sect. 4.2]. For this case, Chen et al. proved in [4, Corol-
lary 4] that any index set I ⊆ X offers I(S;CI ) = 0 if

|I | ≤ d(C⊥
2 )−1,

and I(S;CI ) = H(S) if

|I | ≥ n−d(C1)+1.

Although Chen et al. [4] mentioned that these bounds are not
tight, they did not show any evidence.

Proposition 12. Assume that X = A in the secret sharing
scheme defined by Definition 1. Then, thresholds given by
the right-hand side of Eq.(3) and Eq.(4) in Theorem 9 satisfy
M1(C⊥

2 ,C⊥
1 )− 1 ≥ d(C⊥

2 )− 1 and n−M1(C1,C2) + 1 ≤
n−d(C1)+1, respectively.

Proof. From the definition of the RGHW (Definition 5),
we always have M1(C1,C2) ≥ M1(C1,{�0}). Recall that the
first generalized Hamming weight [17] of C1 is represented
by M1(C1,{�0}) from Remark 7. Since the first general-
ized Hamming weight is the minimum Hamming weight
[17], we have d(C1) = M1(C1,{�0}). Thus, M1(C1,C2) ≥
d(C1) always holds. Similarly, we have M1(C⊥

2 ,C⊥
1 ) ≥

M1(C⊥
2 ,{�0}) = d(C⊥

2 ). These establish |I |> n−d(C1)≥
n−M1(C1,C2) for the threshold of I(S;CI ) = H(S), and
|I | < d(C⊥

2 ) ≤ M1(C⊥
2 ,C⊥

1 ) for that of I(S;CI ) = 0, re-
spectively. �

Remark 13. The scheme of Duursma et al. is equivalent to
the case of l = dim C1−dim C2 = 1. The bounds derived by
the coset distance in [6, Corollary 1.7] is equivalent to our
bounds of Theorem 9 for l = 1.

The next example shows that [4, Corollary 4] is not
tight.
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Example 14 ([9, p.1227]). Let C1 be a binary linear code
with generator matrix G1 and C2 ⊂ C1 be a subcode with a
generator matrix G2, where

G1 =

⎡
⎣0 0 1 1 1

1 0 1 0 0
0 1 0 1 0

⎤
⎦ and G2 =

[
1 0 1 0 0
0 1 0 1 0

]
.

Then, d(C1) = 2 and K2(C1,C2) = 0. Since the RDLP is
monotonically increasing, M1(C1,C2) > 2 holds. We thus
have M1(C1,C2) > d(C1).

Next, consider the following case of Definition 1. As-
sume that N − n < d(D1) and N − n = dim D1 − dim D2.
We then write l = dim D1 −dim D2 = N −n, and let X =
{l + 1, . . . , l + n}. Choose ψ in such a way that ([�s,�0] +
ψ(�s) +�c2) ∈ FN is a codeword of D1. Then, this case is
equivalent to the one proposed by Massey [11] and Chen
et al. [4, Sect. 4.1]. We note that dim D1 = dim C1 and
dim D2 = dim C2 since N −n < d(D1), and that such ψ al-
ways exists. For this case, Chen et al. characterized in [4,
Sect. 4.1] that any index set I ⊆ X offers I(S;CI ) = 0 if

|I | ≤ d(D⊥
1 )− l −1,

and I(S;CI ) = H(S) if

|I | ≥ n+ l−d(D1)+1.

The following proposition proves that these bounds are not
tight.

Proposition 15. Assume that N − n < d(D1) and l = N −
n = dim D1 −dim D2 in the secret sharing scheme defined
by Definition 1. Let X = {l + 1, . . . , l + n}, and let ψ be
chosen such that ([�s,�0] +ψ(�s) +�c2) ∈ D1. Then, thresh-
olds given by the right-hand side of Eq.(3) and Eq.(4) in
Theorem 9 satisfy M1(C⊥

2 ,C⊥
1 )− 1 ≥ d(D⊥

1 )− l − 1 and
n−M1(C1,C2)+1 ≤ n+ l −d(D1)+1, respectively.

Proof. First, we prove M1(C⊥
2 ,C⊥

1 )− 1 ≥ d(D⊥
1 )− l − 1.

Let G ∈ Fdim D1×N be a generator matrix of D1. Then, the
first l columns of G and arbitrary d(D⊥

1 )− l − 1 columns
chosen from the last n columns of G always span Fd(D1)−1.
This guarantees that I(S;CI ) = 0 if |I | ≤ d(D⊥

1 )− l − 1
[4, Sect. 4.1].

Recall that arbitrary d(D⊥
1 )− 1 columns of G are al-

ways linearly independent, and some d(D⊥
1 ) columns are

linearly dependent [10]. However, in Chen et al.’s proof,
only d(D⊥

1 )− l −1 columns of d(D⊥
1 )−1 columns are ar-

bitrary chosen. This implies that, depending on D1, there
exist cases such that the first l columns of G and arbitrary
d(D⊥

1 )− l columns chosen from the last n columns are al-
ways linearly independent. Then, I(S;CI ) = 0 if |I | ≤
d(D⊥

1 )− l. Hence we have d(D⊥
1 )− l−1 ≤M1(C⊥

2 ,C⊥
1 )−

1 since the threshold given by the right-hand side of Eq.(3)
is always tight.

Next we prove n−M1(C1,C2)+1 ≤ n+ l−d(D1)+1.
Since C1 = PX (D1) is generated by puncturing the first l

symbols of each codeword in D1, we have d(C1)≥ d(D1)−
l. On the other hand, M1(C1,C2)≥ d(C1) holds since d(C1)
can be represented by d(C1) = M1(C1,{�0}). We thus obtain

M1(C1,C2) ≥ d(C1) ≥ d(D1)− l.

This establishes n+ l−d(D1)+1≥ n−M1(C1,C2)+1. �

Example 14 gives a case satisfying the inequality n +
l − d(D1) + 1 ≥ n− d(C1) + 1 > n−M1(C1,C2) + 1, and
the following example shows a case satisfying the inequality
d(D⊥

1 )− l−1 < M1(C⊥
2 ,C⊥

1 )−1 in Proposition 15.

Example 16. Let D1 be a binary linear code with a genera-
tor matrix G and a parity check matrix H defined by

G =

⎡
⎣1 0 0 1 0 0

0 1 0 1 1 1
0 0 1 0 0 1

⎤
⎦ and H =

⎡
⎣1 1 0 1 0 0

0 1 0 0 1 0
0 1 1 0 0 1

⎤
⎦ ,

respectively. We have d(D1) = 2 and d(D⊥
1 ) = 2. Let l =

1 < d(D1) and X = {2,3,4,5,6}. Then, d(D⊥
1 )− l−1 = 0.

However, the first column of G and arbitrary 1 = d(D⊥
1 )−

l column chosen from the last 5 columns of G are always
linearly independent. On the other hand, now consider a
punctured code C1 = PX (D1) with a generator matrix G1
and its subcode C2 with a generator matrix G2, where

G1 =

⎡
⎣0 0 0 1 0 0

0 1 0 1 1 1
0 0 1 0 0 1

⎤
⎦ and G2 =

[
0 1 0 1 1 1
0 0 1 0 0 1

]
.

Let C⊥
2 and C⊥

1 be their dual codes with generator matrices
G′

2 and G′
1 given by

G′
2 =

⎡
⎣0 1 0 1 0 0

0 1 0 0 1 0
0 1 1 0 0 1

⎤
⎦ and G′

1 =
[

0 1 0 0 1 0
0 1 1 0 0 1

]
,

respectively. Then, we obtain K2(C⊥
2 ,C⊥

1 ) = 1 and hence
M1(C⊥

2 ,C⊥
1 ) = 2. Therefore, M1(C⊥

2 ,C⊥
1 ) > d(D⊥

1 )− l
holds.

4. Strong Security of Secret Sharing Schemes

This section gives a refined definition of the strong se-
curity in secret sharing schemes. Further, we reveal that
the scheme of Massey [11] and Chen et al. [4] can always
achieve the strong security in the certain range of the num-
ber of shares, characterized by the RGHW.

4.1 Definition of the Strong Security

First, we introduce a special subset J of X called an
anti-access set. This is the generalized definition of non-
qualified sets in strongly-secure threshold ramp schemes,
which is given by Yamamoto [18]. Let a secret vector
be represented by �s = [s1, . . . ,sl ], and Si (1 ≤ i ≤ l) be
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a random variable whose realization is si. We denote by
SI = (Si : i ∈ I ) a tuple of random variables for an index
set I ⊆ {1, . . . , l}. Assume that each share ci (i ∈ X ) is
obtained from �s as we presented in Sect. 2.1, and S1, . . . ,Sl
are uniformly distributed over F and mutually independent.
We then define an anti-access set as follows.

Definition 17 (Anti-access sets). Let J ⊆ X be an index
set. For any subsets F ⊆ J and E ⊆ {1, . . . , l} with |E |+
|F | = |J |+1, if we have

I(SE ;CF ) = 0, (6)

J is called an anti-access set.

Now we define the α-strong security of secret sharing
schemes.

Definition 18 (α-strong security). A secret sharing scheme
is called the one achieving α-strong security if all J ⊆ X
with |J | = α are anti-access sets.

Consider the case where the thresholds given by the
right-hand side of Eq.(3) and Eq.(4) in Theorem 9 satisfy

M1(C⊥
2 ,C⊥

1 )−1 = dim C2,

and n−M1(C1,C2)+1 = dim C1,

respectively. This can be attained when both C1 and C2
are maximum distance separable (MDS) codes [10], e.g.,
Reed-Solomon codes. Then, from Theorem 9, the secret
sharing scheme defined by Definition 1 is equivalent to a
(dim C1,dim (C2/C1),n)-threshold ramp scheme [1], [18].
Moreover, if the scheme achieves the (dim C1 − 1)-strong
security, i.e., all nonqualified sets are anti-access sets, it is
called a strongly-secure threshold ramp scheme [13], [18].

4.2 Characterization of the α-Strong Security

This subsection clarifies that the scheme proposed by
Massey [11] and Chen et al. [4] can achieve the α-strong
security where the value α is precisely characterized by the
RGHW.

Consider the following case of Definition 1. Assume
that N − n < d(D1) and N − n = dim D1 − dim D2. We
then write l = dim D1 − dim D2 = N − n, and let X =
{l + 1, . . . , l + n}. Choose ψ in such a way that ([�s,�0] +
ψ(�s) +�c2) ∈ FN is a codeword of D1. Then, this case is
equivalent to the one proposed by Massey [11] and Chen
et al. [4, Sect. 4.1]. We note that dim D1 = dim C1 and
dim D2 = dim C2 since N −n < d(D1), and that such ψ al-
ways exists.

Without any loss of generality, we suppose that D1 is
a systematic code. In other words, a generator matrix G1 of
D1 is defined by the systematic form,

G1 =
[
I P

] ∈ Fdim D1×N ,

where I is an identity matrix. Also, a generator matrix G2 of

D2 consists of last dim D2 rows of G1. Under these suppo-
sitions, we have the following theorem.

Thereom 19. Assume N − n < d(D1) and l = N − n =
dim D1 − dim D2 in the secret sharing scheme defined by
Definition 1. Let X = {l + 1, . . . , l + n} ⊂ A , and let ψ
be chosen such that ([�s,�0] +ψ(�s) +�c2) ∈ D1. Let Yi =
{1, . . . , l +n}\{i} be another index set for 1 ≤ i ≤ l, and de-
fine a punctured code G1,i = PYi(D1) and a shortened code
G2,i = (D1)Yi . Then, the secret sharing scheme defined by
Definition 1 can achieve the α-strong security for

α = min
{

M1(G⊥
2,i,G

⊥
1,i) : 1 ≤ i ≤ l

}
−1.

Proof. Since we supposed that a generator matrix G1 of D1
is systematic, the secret sharing scheme generates shares
cl+1, . . . ,cl+n by

[s1, . . . ,sl ,cl+1, . . . ,cl+n]
= [s1, . . . ,sl ,rl+1, . . . ,rdim D1 ]G1, (7)

where rl+1, . . . ,rdim D1 are chosen from F at random. This
guarantees that, for each i ∈ {1, . . . , l}, G2,i is a subcode of
G1,i with dimension dim G2,i = dim G1,i − 1 = dim D1 − 1.
We have supposed that s1, . . . ,sl are mutually indepen-
dent and uniformly distributed over F. Hence, for each
i ∈ {1, . . . , l}, the secret sharing scheme given by Eq.(7)
can be viewed as another secret sharing scheme that gen-
erates shares s1, . . . ,si−1,si+1, . . . ,sl ,cl+1, . . . ,cl+n from one
secret element si. Namely, a secret sharing scheme with D1,
subcode G2,i ⊂ D1, and their punctured codes PYi(D1) =
G1,i,PYi(G2,i) = G2,i for an index set Yi. Therefore, Theo-
rem 9 yields that for any index sets R1 ⊆ {1, . . . , l}\{i} and
R2 ⊆{l+1, . . . , l+n} with |R1|+ |R2| ≤M1(G⊥

2,i,G
⊥
1,i)−1,

we have

I(Si;SR1 ,CR2) = 0. (8)

Next consider the mutual information between a sub-
set of secret elements and a subset of shares. Let E =
{k1, . . . ,k|E |} ⊆ {1, . . . , l} and F ⊆ {l +1, . . . , l +n} be ar-
bitrary index sets. We then have

I(SE ;CF ) = H(Sk1 , . . . ,Sk|E |)−H(Sk1 , . . . ,Sk|E | |CF )

=
|E |
∑
j=1

H(Sk j)−
|E |
∑
j=1

H(Sk j |CF ,Sk1 , . . . ,Sk j−1)

=
|E |
∑
j=1

I(Sk j ;CF ,Sk1 , . . . ,Sk j−1),

from the chain rule of conditional entropy [5]. Since the
mutual information is nonnegative, we have I(SE ;CF ) =
0 if and only if I(Sk j ;CF ,Sk1 , . . . ,Sk j−1) = 0 for all k j ∈
E . If |E |+ |F | ≤ M1(G⊥

2,k j
,G ⊥

1,k j
), by substituting i = k j,

R1 = {k1, . . . ,k j−1} and R2 = F in Eq.(8), we always have
I(Sk j ;CF ,Sk1 , . . . ,Sk j−1) = 0 for only k j. Thus, for any index
sets E and F satisfying
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|E |+ |F | ≤ min
{

M1(G⊥
2,i,G

⊥
1,i) : 1 ≤ i ≤ l

}
,

we always have I(Sk j ;CF ,Sk1 , . . . ,Sk j−1) = 0 for all k j si-
multaneously, and hence I(SE ;CF ) = 0 holds. Therefore,
every subset of {l +1, . . . , l +n} with cardinality at most

α = min
{

M1(G ⊥
2,i,G

⊥
1,i) : 1 ≤ i ≤ l

}
−1,

is an anti-access set. �

The value α in Theorem 19 for the α-strong secu-
rity is as tight as the bounds in Theorem 9. This is be-
cause as follows. Let j ∈ {1, . . . , l} be an element satisfy-

ing M1(G ⊥
2, j,G

⊥
1, j) = min

{
M1(G⊥

2,i,G
⊥
1,i) : 1 ≤ i ≤ l

}
. Then,

since the the threshold given by the right-hand side of
Eq.(3) in Theorem 9 is tight, there always exists at least
one combination of subsets T1 ⊆ {1, . . . , l}\{ j} and T2 ⊆
{l + 1, . . . , l + n} with |T1|+ |T2| = M1(G⊥

2, j,G
⊥
1, j) that sat-

isfy I(S j;ST1 ,CT2) > 0. Hence, there exist subsets of
{l + 1, . . . , l + n} with cardinality M1(G⊥

2, j,G
⊥
1, j) that do not

satisfy Definition 17.
The thresholds given by Theorem 9 are independent of

the distribution of �s as shown in Corollary 11. In contrast,
�s must be uniformly distributed over Fl to establish Theo-
rem 19. This is because elements of �s need to be treated
as random numbers that are mutually independent and uni-
formly distributed over F, as shown in the proof of Theo-
rem 19.

It is proved in [8] that the secret sharing scheme with
the same setting as Theorem 19 achieves the (d(D⊥

1 ))−2)-
strong security. Unlike Theorem 19, this characterization by
the minimum Hamming weight is not tight.

Proposition 20. Assume that N − n < d(D1) and l = N −
n = dim D1 −dim D2 in the secret sharing scheme defined
by Definition 1. Let X = {l + 1, . . . , l + n}, and let ψ
be chosen such that ([�s,�0] +ψ(�s) +�c2) ∈ D1. Let Yi =
{1, . . . ,N}\{i} be another index set for 1 ≤ i ≤ l, and de-
fine a punctured code G1,i = PYi(D1) and a shortened code
G2,i = (D1)Yi . Then, we have

min
{

M1(G⊥
2,i,G

⊥
1,i) : 1 ≤ i ≤ l

}
−1 ≥ d(D⊥

1 )−2.

This can be proved in a similar way to the
proof of Proposition 15. Hence the proof is omit-
ted. We note that Example 16 also gives a case of

min
{

M1(G ⊥
2,i,G

⊥
1,i) : 1 ≤ i ≤ l

}
−1 > d(D⊥

1 )−2 for l = 1.

5. Conclusion

This paper has given a precise characterization of secret
sharing schemes based on arbitrary linear codes. We have
characterized thresholds t1 and t2 by the relative generalized
Hamming weight (RGHW). One shows that any set of at
most t1 shares leaks no information about the secret, and the

other shows that any set of at least t2 shares uniquely deter-
mines the secret. Moreover, this paper has precisely char-
acterized the strong security in secret sharing schemes by
the RGHW, as a generalization of strongly-secure threshold
ramp schemes. These characterizations enable to determine
the property of secret sharing schemes from the parameters
of linear codes, when we design systems using secret shar-
ing schemes.
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